Lesson: Operations on Real Numbers

A complete guide for Prep 2 students by Mr. Ayman Hassan

Math Egypt Logo by Mr. Ayman Hassan (شعار ماث إيجيبت من مستر أيمن حسن)

💡 Think and Discuss!

A rectangular carpet has dimensions \((\sqrt{5} + 1)\) m and \((\sqrt{5} - 1)\) m. A square carpet has a side length of \(\sqrt{5}\) m.

Which carpet has a larger area? Which has a larger perimeter? Discuss.

Two carpets, one rectangular and one square, for comparison. By Math Egypt - Mr. Ayman Hassan (سجادتان، واحدة مستطيلة والأخرى مربعة، للمقارنة. بواسطة ماث إيجيبت - مستر أيمن حسن)

📚 Learn!

Before studying how to perform arithmetic operations (addition, subtraction, multiplication, and division) on real numbers, we will first learn about the concept of similar radicals.

Diagram showing the parts of a radical: coefficient, index, and radicand. By Math Egypt - Mr. Ayman Hassan (رسم يوضح أجزاء الجذر: المعامل، الدليل، والمجذور. بواسطة ماث إيجيبت - مستر أيمن حسن)

Similar Radicals

Similar radicals are radicals that have the same index and radicand.

Examples of Similar Radicals:

\(2\sqrt{3}\) and \(3\sqrt{3}\)

\(-5\sqrt{7}\) and \(\sqrt{7}\)

\(4\sqrt[3]{2}\) and \(-2\sqrt[3]{2}\)

Examples of Non-Similar Radicals:

\(4\sqrt{3}\) and \(2\sqrt{5}\)

\(\sqrt[3]{5}\) and \(\sqrt{5}\)

\(2\sqrt{7}\) and \(3\sqrt[4]{7}\)

🔢 Example 1

Given: \(x = -4\sqrt{3}\), \(y = \sqrt{3}\), \(z = \sqrt[3]{5}\). Find the value of each of the following:

1. \(x + y\)
2. \(x \times y\)
3. \(\frac{x}{2y}\)
4. \(2x - z^3\)

Solution:

1. Solution for \(x + y\):

\(x + y = -4\sqrt{3} + \sqrt{3}\)

\(= (-4 + 1)\sqrt{3}\)

\(= -3\sqrt{3}\)

Note: When adding similar radicals, we treat them like similar algebraic terms: \(-4x + x = -3x\).

2. Solution for \(x \times y\):

\(x \times y = -4\sqrt{3} \times \sqrt{3}\)

\(= -4 \times 3\)

\(= -12\)

Note: \(\sqrt{a} \times \sqrt{a} = a\), here \(\sqrt{3} \times \sqrt{3} = 3\).

3. Solution for \(\frac{x}{2y}\):

\(\frac{x}{2y} = \frac{-4\sqrt{3}}{2\sqrt{3}}\)

\( = \frac{-4}{2}\)

\(= -2\)

4. Solution for \(2x - z^3\):

\(2x - z^3 = 2(-4\sqrt{3}) - (\sqrt[3]{5})^3\)

\(= -8\sqrt{3} - 5\)

Note: Cannot combine \(-8\sqrt{3}\) and \(-5\) because they are not similar terms.

📌 Note!

  • If \(x \ge 0\), then: \(\sqrt{x} \times \sqrt{x} = (\sqrt{x})^2 = x\)
  • If \(x \in \mathbb{R}\), then: \(\sqrt[3]{x} \times \sqrt[3]{x} \times \sqrt[3]{x} = (\sqrt[3]{x})^3 = x\)

🧮 Example 2

Write each of the following in simplest form so the denominator is an integer:

1️⃣ \(\frac{7}{\sqrt{3}}\)

2️⃣ \(\frac{-15}{\sqrt{5}}\)

3️⃣ \(\frac{12}{5\sqrt{2}}\)

Solution:

1. \(\frac{7}{\sqrt{3}}\)

\( = \frac{7}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\)

\( = \frac{7\sqrt{3}}{3}\)

2. \(\frac{-15}{\sqrt{5}}\)

\( = \frac{-15}{\sqrt{5}}\times\frac{\sqrt{5}}{\sqrt{5}}\)

\( = \frac{-15\sqrt{5}}{5}\)

\( = -3\sqrt{5}\)

3. \(\frac{12}{5\sqrt{2}}\)

\( = \frac{12}{5\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}\)

\( = \frac{12\sqrt{2}}{10}\)

\( = \frac{6\sqrt{2}}{5}\)

⚖️ Properties of Operations on Real Numbers

Table summarizing properties of addition and multiplication on real numbers. By Math Egypt - Mr. Ayman Hassan (جدول يلخص خواص الجمع والضرب على الأعداد الحقيقية. بواسطة ماث إيجيبت - مستر أيمن حسن)

💡 Example 3

Find the result in simplest form:

1️⃣ \(2\sqrt{3}(4+\sqrt{3})-4\sqrt{3}\)

2️⃣ \((\sqrt{7}-1)(2\sqrt{7}+3)\)

3️⃣ \((2\sqrt{2}+1)(2\sqrt{2}-1)\)

4️⃣ \((2\sqrt{5}-5)^2\)

Solution:

1. \(2\sqrt{3}(4+\sqrt{3})-4\sqrt{3}\)

\(= 2\sqrt{3} \times 4 + 2\sqrt{3} \times \sqrt{3} - 4\sqrt{3}\)

\(= 8\sqrt{3} + 2 \times 3 - 4\sqrt{3}\)

\(= 8\sqrt{3} + 6 - 4\sqrt{3}\)

\(= 4\sqrt{3} + 6\)

2. \((\sqrt{7}-1)(2\sqrt{7}+3)\)

\(= \sqrt{7} \times 2\sqrt{7} + \sqrt{7} \times 3 - 1 \times 2\sqrt{7} - 1 \times 3\)

\(= 14 + 3\sqrt{7} - 2\sqrt{7} - 3\)

\(= (14 - 3) + (3\sqrt{7} - 2\sqrt{7})\)

\(= 11 + \sqrt{7}\)

3. \((2\sqrt{2}+1)(2\sqrt{2}-1)\)

\(= (2\sqrt{2})^2 - (1)^2\)

\(= 8 - 1\)

\(= 7\)

4. \((2\sqrt{5}-5)^2\)

\(= (2\sqrt{5})^2 - 2 \times 2\sqrt{5} \times 5 + 5^2\)

\(= 20 - 20\sqrt{5} + 25\)

\(= 45 - 20\sqrt{5}\)

✅ Think and Discuss Activity Answer

Question:

Rectangle area with dimensions: \((\sqrt{5} + 1)\) m × \((\sqrt{5} - 1)\) m

Square area with side: \(\sqrt{5}\) m

Which carpet has a larger area? Which has a larger perimeter? Discuss.

Solution:

1. Calculate Area and Perimeter for the Rectangle Carpet:

Dimensions: Length \(L = \sqrt{5} + 1\), Width \(W = \sqrt{5} - 1\).

Area \(A_R = L \times W\)

\(= (\sqrt{5} + 1)(\sqrt{5} - 1)\)

\(= (\sqrt{5})^2 - (1)^2\)

\(= 5 - 1 = 4\) m²

Perimeter \(P_R = 2(L + W)\)

\(= 2\bigl((\sqrt{5} + 1) + (\sqrt{5} - 1)\bigr)\)

\(= 2(2\sqrt{5})\)

\(= 4\sqrt{5}\) m

2. Calculate Area and Perimeter for the Square Carpet:

Side \(s = \sqrt{5}\).

Area \(A_S = s^2\)

\(= (\sqrt{5})^2 = 5\) m²

Perimeter \(P_S = 4 \times s = 4\sqrt{5}\) m

3. Comparison:

  • Areas: The square carpet has a larger area since \(5 > 4\).
  • Perimeters: Both carpets have the same perimeter.

🔄 Example 4

Find the additive inverse and the multiplicative inverse in simplest form for each of the following:

1️⃣ \(3\sqrt{2}\)

2️⃣ \(2 - \sqrt{3}\)

Solution:

1. For \(3\sqrt{2}\):

Additive Inverse = \(-3\sqrt{2}\)

Multiplicative Inverse = \(\frac{1}{3\sqrt{2}}\)

To simplify:

\(\frac{1}{3\sqrt{2}} = \frac{1}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\)

\(= \frac{\sqrt{2}}{3 \times 2} = \frac{\sqrt{2}}{6}\)

Thus, the multiplicative inverse in simplest form = \(\frac{\sqrt{2}}{6}\)

Note that: To simplify \(\frac{1}{3\sqrt{2}}\), multiply both numerator and denominator by \(\sqrt{2}\) to rationalize the denominator.

2. For \(2 - \sqrt{3}\):

Additive Inverse = \(-(2 - \sqrt{3}) = -2 + \sqrt{3}\)

Multiplicative Inverse = \(\frac{1}{2 - \sqrt{3}}\)

To simplify:

\(\frac{1}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}\)

\(= \frac{2 + \sqrt{3}}{2^2 - (\sqrt{3})^2} = \frac{2 + \sqrt{3}}{4 - 3} = \frac{2 + \sqrt{3}}{1}\)

Thus, the multiplicative inverse in simplest form = \(2 + \sqrt{3}\)

Note that: To simplify \(\frac{1}{2 - \sqrt{3}}\), multiply numerator and denominator by the conjugate \(2 + \sqrt{3}\) to remove the square root from the denominator.

📦 Example 5

In the opposite figure: A covered glass aquarium in the shape of a rectangular prism for displaying fish, find:

  • The volume of the glass aquarium.
  • The total surface area of the aquarium to the nearest m².
Aquarium with dimensions for calculating volume and surface area. By Math Egypt - Mr. Ayman Hassan (حوض سمك بأبعاد لحساب الحجم والمساحة السطحية. بواسطة ماث إيجيبت - مستر أيمن حسن)

Solution:

1. Volume of the Glass Aquarium (V):

\(V = L \times W \times H\)

\(= 2\sqrt{2} \times 2 \times \sqrt{2}\)

\(= (2 \times 2) \times (\sqrt{2} \times \sqrt{2})\)

\(= 4 \times 2 = 8\) m³

✅ The volume of the aquarium is 8 m³.


2. Total Surface Area of the Aquarium (A) (nearest m²):

\(A = 2(LW + WH + LH)\)

\(= 2\bigl((2\sqrt{2} \times 2) + (2 \times \sqrt{2}) + (2\sqrt{2} \times \sqrt{2})\bigr)\)

\(= 2(4\sqrt{2} + 2\sqrt{2} + 4)\)

\(= 2(6\sqrt{2} + 4) = 12\sqrt{2} + 8\)

Approximate using \(\sqrt{2} \approx 1.414\):

\(A \approx 12 \times 1.414 + 8\)

\(\approx 16.968 + 8 = 24.968\)

Rounding to nearest m²: \(A \approx 25\)

✅ The total surface area of the aquarium is 25 m².

🌷 Example 6

In the figure, there is a flowerbed whose base is in the shape of a trapezoid. Find the area of the base of the flowerbed.

Trapezoidal flowerbed with given dimensions. By Math Egypt - Mr. Ayman Hassan (حوض زهور على شكل شبه منحرف بأبعاد معطاة. بواسطة ماث إيجيبت - مستر أيمن حسن)

Solution:

The shape of the flowerbed's base is a trapezoid. The formula for the area of a trapezoid is:

\(A = \frac{1}{2} (b_1 + b_2) \times h\)

Where:

  • \(b_1\) is the length of the first base (top base)
  • \(b_2\) is the length of the second base (bottom base)
  • \(h\) is the height

From the figure, we have:

  • \(b_1 = (\sqrt{5} - \sqrt{2})\) m
  • \(b_2 = (\sqrt{5} + \sqrt{2})\) m
  • \(h = \sqrt{5}\) m

Now, substitute these values into the formula:

\(A = \frac{1}{2} \bigl[(\sqrt{5} - \sqrt{2}) + (\sqrt{5} + \sqrt{2})\bigr] \times \sqrt{5}\)

First, simplify inside the parentheses:

\(A = \frac{1}{2} (2\sqrt{5}) \times \sqrt{5}\)

Multiply \(\frac{1}{2}\) by \(2\sqrt{5}\):

\(A = \sqrt{5} \times \sqrt{5}\)

Since \(\sqrt{a} \times \sqrt{a} = a\):

\(A = 5\) m²

✅ Therefore, the area of the base of the flowerbed is 5 m².

Explore More Math Lessons

Home Worksheet Related Youtube Video Extra Exercises