Lesson: Laws of Exponents in Real Numbers

A complete guide for Prep 2 students by Mr. Ayman Hassan

Math Egypt Logo by Mr. Ayman Hassan

📖 Learn!

📚 Repeated Multiplication in the Set of Real Numbers

The mathematical expression \(a^n\) is used to represent the product of multiplying the real number \(a\) by itself \(n\) times.

Diagram showing a^n equals a multiplied by itself n times, with 'a' as the base and 'n' as the exponent. From Math Egypt by Mr. Ayman Hassan

For example:

Example showing rules for negative bases with even and odd exponents. If n is an even integer, then (-a)^n = a^n. If n is an odd integer, then (-a)^n = -a^n. From Math Egypt by Mr. Ayman Hassan

📝 Example (1)

Find the value of each of the following:

1\((-\sqrt{5})^4\)
2\( -(\sqrt{5})^4 \)
3\((-\sqrt{5})^3\)
4\((-\sqrt{2})^5\)
5\( -(\sqrt{2})^5 \)
6\((-\sqrt{2})^6\)

Solution

1
\((-\sqrt{5})^4\) \( = (\sqrt{5})^4\) (Since the exponent is even) \( = (\sqrt{5}^2)^2 = 5^2 \) \( = 25 \)
2
\( -(\sqrt{5})^4 \) \( = - (5^2) \) (Calculate the power first) \( = -25 \)
3
\((-\sqrt{5})^3\) \( = -(\sqrt{5})^3\) (Since the exponent is odd) \( = -(\sqrt{5} \times \sqrt{5} \times \sqrt{5}) \) \( = -5\sqrt{5} \)
4
\((-\sqrt{2})^5\) \( = -(\sqrt{2})^5\) (Since the exponent is odd) \( = -(\sqrt{2}^2 \times \sqrt{2}^2 \times \sqrt{2}) \) \( = -(2 \times 2 \times \sqrt{2}) = -4\sqrt{2} \)
5
\( -(\sqrt{2})^5 \) \( = -(4\sqrt{2}) \) (Calculate the power first) \( = -4\sqrt{2} \)
6
\((-\sqrt{2})^6\) \( = (\sqrt{2})^6\) (Since the exponent is even) \( = (\sqrt{2}^2)^3 = 2^3 \) \( = 8 \)

Zero and Negative Exponents

The Zero Exponent

Any non-zero real number raised to the power of zero equals 1.

\( a^0 = 1 \), where \( a \in \mathbb{R}^* \)

Examples: \( 5^0 = 1 \), \( (\sqrt{3})^0 = 1 \), \( (-\sqrt[3]{4})^0 = 1 \)

The Negative Exponent

For any non-zero real number \( a \) and a positive integer \( n \), the expression \( a^{-n} \) is the multiplicative inverse of \( a^n \).

\( a^{-n} = \frac{1}{a^n} \), where \( a \in \mathbb{R}^* \), \( n \in \mathbb{Z}^+ \)

Examples:

\( (\sqrt{3})^{-4} = \frac{1}{(\sqrt{3})^4} = \frac{1}{9} \)

\( (\frac{1}{\sqrt[3]{4}})^{-3} = (\sqrt[3]{4})^3 = 4 \)

Important Note

  • 💡

    Division by Zero

    Division by zero is undefined. Therefore, when symbols are present in the denominator, it is a condition that these symbols must not equal zero.

    This means for any expression of the form $\frac{X}{Y}$, $Y \neq 0$.

Laws of Multiplication

Rule 1: Product of Powers with the Same Base

When multiplying powers with the same base, keep the base and add the exponents. For any real number \(a \in \mathbb{R}\) and integers \(m, n \in \mathbb{Z}\):

\( a^m \times a^n = a^{m+n} \)

Examples:

  • \( 2^4 \times 2^6 = 2^{4+6} = 2^{10} \)
  • \( a^{-3} \times a^5 = a^{-3+5} = a^2 \)

Rule 2: Power of a Product

When finding the power of a product of two numbers, distribute the exponent to each number. For any real numbers \(a, b \in \mathbb{R}\) and integer \(n \in \mathbb{Z}\):

\( (a \times b)^n = a^n \times b^n \)

Example:

  • \( (3\sqrt{2})^2 = 3^2 \times (\sqrt{2})^2 = 9 \times 2 = 18 \)

Important Note: Sum/Difference of Powers

It is important to remember that the exponent cannot be distributed over addition or subtraction:

  • ⚠️ \( (a+b)^n \neq a^n + b^n \)
  • ⚠️ \( (a-b)^n \neq a^n - b^n \)

Laws of Division

Rule 1: Quotient of Powers with the Same Base

When dividing powers with the same base, keep the base and subtract the exponents. For any non-zero real number \(a \in \mathbb{R}^*\) and integers \(m, n \in \mathbb{Z}\):

\( \frac{a^m}{a^n} = a^{m-n} \)

Example:

  • \( \frac{(\sqrt{7})^5}{(\sqrt{7})^2} = (\sqrt{7})^{5-2} = (\sqrt{7})^3 = 7\sqrt{7} \)

Rule 2: Power of a Quotient

When finding the power of a quotient of two numbers, distribute the exponent to both the numerator and the denominator. For any real number \(a \in \mathbb{R}\), non-zero real number \(b \in \mathbb{R}^*\), and integer \(n \in \mathbb{Z}\):

\( (\frac{a}{b})^n = \frac{a^n}{b^n} \)

Example:

  • \( (\frac{6}{\sqrt{3}})^2 = \frac{6^2}{(\sqrt{3})^2} = \frac{36}{3} = 12 \)

📝 Example (2)

Simplify each of the following to its simplest form:

1\( \frac{(6a)^2}{2a} \)
2\( \frac{(-\sqrt{3}ab)^4}{3a^4b^2} \)
3\( \frac{(\sqrt{8})^4 \times (\sqrt{2})^3}{(2\sqrt{2})^5} \)
4\( \frac{(\sqrt{3})^2 \times (\sqrt{3})^4 \times (\sqrt{3})^{-1}}{(\sqrt{3})^5 \times (\sqrt{3})^{-2}} \)
5\( \frac{(\sqrt{18})^5 \times (\sqrt{2})^3}{(\sqrt{12})^4} \)

Solution

1
\( \frac{(6a)^2}{2a} \) \( = \frac{6^2 \times a^2}{2 \times a} = \frac{36a^2}{2a} \) \( = 18a^{2-1} = 18a \)
2
\( \frac{(-\sqrt{3}ab)^4}{3a^4b^2} \) \( = \frac{(-\sqrt{3})^4 \times a^4 \times b^4}{3 \times a^4 \times b^2} \) \( = \frac{9 \times a^4 \times b^4}{3 \times a^4 \times b^2} \) \( = 3 \times a^{4-4} \times b^{4-2} \) \( = 3 \times a^0 \times b^2 \) \( = 3 \times 1 \times b^2 = 3b^2 \)
3
\( \frac{(\sqrt{8})^4 \times (\sqrt{2})^3}{(2\sqrt{2})^5} \) \( = \frac{(\sqrt{4 \times 2})^4 \times (\sqrt{2})^3}{(2\sqrt{2})^5} = \frac{(2\sqrt{2})^4 \times (\sqrt{2})^3}{(2\sqrt{2})^5} \) \( = \frac{2^4 \times (\sqrt{2})^4 \times (\sqrt{2})^3}{2^5 \times (\sqrt{2})^5} \) \( = 2^{4-5} \times (\sqrt{2})^{4+3-5} \) \( = 2^{-1} \times (\sqrt{2})^2 \) \( = \frac{1}{2} \times 2 = 1 \)
4
\( \frac{(\sqrt{3})^2 \times (\sqrt{3})^4 \times (\sqrt{3})^{-1}}{(\sqrt{3})^5 \times (\sqrt{3})^{-2}} \) \( = \frac{(\sqrt{3})^{2+4+(-1)}}{(\sqrt{3})^{5+(-2)}} \) \( = \frac{(\sqrt{3})^{5}}{(\sqrt{3})^{3}} \) \( = (\sqrt{3})^{5-3} \) \( = (\sqrt{3})^2 \) \( = 3 \)
5
\( \frac{(\sqrt{18})^5 \times (\sqrt{2})^3}{(\sqrt{12})^4} \) \( = \frac{(3\sqrt{2})^5 \times (\sqrt{2})^3}{(2\sqrt{3})^4} \) \( = \frac{3^5 \times (\sqrt{2})^5 \times (\sqrt{2})^3}{2^4 \times (\sqrt{3})^4} \) \( = \frac{3^5 \times (\sqrt{2})^{5+3}}{2^4 \times (\sqrt{3})^4} \) \( = \frac{3^5 \times (\sqrt{2})^8}{2^4 \times (\sqrt{3})^4} \) \( = \frac{3^5 \times 2^4}{2^4 \times 3^2} \) \( = 3^{5-2} \times 2^{4-4} \) \( = 3^3 \times 2^0 \) \( = 27 \times 1 \) \( = 27 \)

📝 Example (3)

Simplify each of the following to its simplest form, then find the numerical value for the given value of \(n\):

1\( (\sqrt{6})^n \times (\sqrt{3})^{n-1} \times (\sqrt{2})^{-n} \), then find the numerical value when \(n=1\).
2\( \frac{10^{2n} \times 0.001}{10^{-n+1} \times 100} \), then find the numerical value when \(n=2\).
3\( \frac{(\sqrt{5})^n \times (\sqrt{3})^{2-n}}{3 \times (\sqrt{15})^{-n}} \), then find the numerical value when \(n=-2\).
4\( \frac{1000 \times 0.1^n \times 10^{n-1}}{10^{n+2}} \)

Solution

1
\( (\sqrt{6})^n \times (\sqrt{3})^{n-1} \times (\sqrt{2})^{-n} \) \( = (\sqrt{3} \times \sqrt{2})^n \times (\sqrt{3})^{n-1} \times (\sqrt{2})^{-n} \) \( = (\sqrt{3})^n \times (\sqrt{2})^n \times (\sqrt{3})^{n-1} \times (\sqrt{2})^{-n} \) \( = (\sqrt{3})^{n+n-1} \times (\sqrt{2})^{n-n} \) \( = (\sqrt{3})^{2n-1} \times (\sqrt{2})^0 \) \( = (\sqrt{3})^{2n-1} \times 1 \) \( = (\sqrt{3})^{2n-1} \)

When \(n=1\):

\( \therefore (\sqrt{3})^{2(1)-1} = (\sqrt{3})^{2-1} = \sqrt{3} \)
2
\( \frac{10^{2n} \times 0.001}{10^{-n+1} \times 100} \) \( = \frac{10^{2n} \times 10^{-3}}{10^{-n+1} \times 10^2} \) \( = \frac{10^{2n-3}}{10^{-n+1+2}} \) \( = \frac{10^{2n-3}}{10^{-n+3}} \) \( = 10^{(2n-3) - (-n+3)} \) \( = 10^{2n-3+n-3} \) \( = 10^{3n-6} \)

When \(n=2\):

\( \therefore 10^{3(2)-6} = 10^{6-6} = 10^0 = 1 \)
3
\( \frac{(\sqrt{5})^n \times (\sqrt{3})^{2-n}}{3 \times (\sqrt{15})^{-n}} \) \( = \frac{(\sqrt{5})^n \times (\sqrt{3})^{2-n}}{3 \times (\sqrt{5} \times \sqrt{3})^{-n}} \) \( = \frac{(\sqrt{5})^n \times (\sqrt{3})^{2-n}}{3 \times (\sqrt{5})^{-n} \times (\sqrt{3})^{-n}} \) \( = \frac{1}{3} \times (\sqrt{5})^{n - (-n)} \times (\sqrt{3})^{(2-n) - (-n)} \) \( = \frac{1}{3} \times (\sqrt{5})^{2n} \times (\sqrt{3})^{2-n+n} \) \( = \frac{1}{3} \times ((\sqrt{5})^2)^n \times (\sqrt{3})^2 \) \( = \frac{1}{3} \times 5^n \times 3 \) \( = 5^n \)

When \(n=-2\):

\( \therefore 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \)
4
\( \frac{1000 \times 0.1^n \times 10^{n-1}}{10^{n+2}} \) \( = \frac{10^3 \times (10^{-1})^n \times 10^{n-1}}{10^{n+2}} \) \( = \frac{10^3 \times 10^{-n} \times 10^{n-1}}{10^{n+2}} \) \( = \frac{10^{3-n+n-1}}{10^{n+2}} \) \( = \frac{10^{2}}{10^{n+2}} \) \( = 10^{2 - (n+2)} \) \( = 10^{2 - n - 2} \) \( = 10^{-n} \)

There is no specific value of \(n\) given for this problem, so the simplified form is \(10^{-n}\).

📝 Example (4)

In the opposite figure:

Image showing a square with side length 3^x cm and a rectangle with dimensions 3^(x+1) cm and 3 cm. From Math Egypt by Mr. Ayman Hassan
  • A square with side length \(3^x\) cm.
  • A rectangle with dimensions \(3^{x+1}\) cm and \(3\) cm.

If the perimeter of the square is 20 cm, then find the area of the rectangle.

Solution

1

Perimeter of the square \( = 20 \) cm

\( \therefore 4 \times 3^x = 20 \) \( \therefore 3^x = \frac{20}{4} = 5 \)
2

Area of the rectangle \(A = \text{Length} \times \text{Width}\)

\( \therefore A = 3^{x+1} \times 3^x \) \( = 3^{x+1+x} = 3^{2x+1} \) \( = 3^{2x} \times 3^1 \) \( = (3^x)^2 \times 3 \) \( = (5)^2 \times 3 \) (Substitute \(3^x=5\)) \( = 25 \times 3 \) \( = 75 \)

Area of the rectangle \( = 75 \text{ cm}^2 \)

📝 Example (5)

If \(3^x = 4\), then find the numerical value for each of the following:

1\( 3^{x+1} \)
2\( 3^{x-1} \)
3\( 3^{x+2} + 3^{x+3} \)

Solution

1
\( 3^{x+1} \) \( = 3^x \times 3^1 \) \( = 4 \times 3 \) (Substitute \(3^x=4\)) \( = 12 \)
2
\( 3^{x-1} \) \( = 3^x \times 3^{-1} \) \( = 3^x \times \frac{1}{3} \) \( = 4 \times \frac{1}{3} \) (Substitute \(3^x=4\)) \( = \frac{4}{3} \)
3
\( 3^{x+2} + 3^{x+3} \) \( = 3^x \times 3^2 + 3^x \times 3^3 \) \( = 3^x (3^2 + 3^3) \) (Factor out \(3^x\)) \( = 4 (9 + 27) \) (Substitute \(3^x=4\)) \( = 4 (36) \) \( = 144 \)

📝 Example (6)

Choose the correct answer from the given options:

1 What is the result of \( (a b)^3 \div b^3 \)?

a \( a^3 \)

b \( \frac{a}{b} \)

c \( \frac{a^3}{b^2} \)

d \( \frac{a^2}{b^3} \)

2 What is the value of \( \frac{(-7)^0}{-(\sqrt{7})^0} \)?

a \( 0 \)

b \( 6 \)

c \( 1 \)

d \( -6 \)

3 What is the result of \( (\sqrt{3})^3 \times (\sqrt{3})^{-4} \)?

a \( \sqrt{3} \)

b \( \frac{\sqrt{3}}{3} \)

c \( 3 \)

d \( \frac{1}{3} \)

4 What is the result of \( \sqrt{\frac{5}{10^{-1}}} \)?

a \( 5\sqrt{2} \)

b \( 5\sqrt{2} \)

c \( \frac{5}{\sqrt{10}} \)

d \( 2 \)

5 What is the perimeter of a square whose area is \( a^4 \text{ cm}^2 \)?

a \( a^4 \text{ cm} \)

b \( (\sqrt{a})^4 \text{ cm} \)

c \( 4\sqrt{a} \text{ cm} \)

d \( 4a^2 \text{ cm} \)

6 What is the value of \( 4^2 + 4^2 + 4^2 + 4^2 \)?

a \( 4^2 \)

b \( 4^3 \)

c \( 4^8 \)

d \( 4^{16} \)

7 If \( 2^{x-1} = 1 \), what is the value of \( x \)?

a \( 0 \)

b \( 1 \)

c \( -1 \)

d \( -2 \)

8 If \( (\sqrt{6})^x \times \sqrt{6}^x = 1 \), what is the value of \( x \)?

a \( 0 \)

b \( 1 \)

c \( -1 \)

d \( -2 \)

9 What is \( \frac{1}{5} \) of \( (\sqrt{5})^6 \)?

a \( 5 \)

b \( \sqrt[3]{5} \)

c \( (\sqrt{5})^8 \)

d \( 25 \)

10 If \( 2^x = 3 \), then what is the value of \( 2^{x+1} \)?

a \( 4 \)

b \( 5 \)

c \( 6 \)

d \( 9 \)

Solution

1
\( (a b)^3 \div b^3 \) \( = \frac{(ab)^3}{b^3} \) \( = \frac{a^3 b^3}{b^3} \) \( = a^3 \)

Correct option: (a) \( a^3 \)

2
\( \frac{(-7)^0}{-(\sqrt{7})^0} \) \( = \frac{1}{-1} \) (Any non-zero number raised to the power of 0 is 1) \( = -1 \)

Correct option: (c) \( 1 \)

3
\( (\sqrt{3})^3 \times (\sqrt{3})^{-4} \) \( = (\sqrt{3})^{3 + (-4)} \) \( = (\sqrt{3})^{-1} \) \( = \frac{1}{\sqrt{3}} \) \( = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \) (Rationalize the denominator) \( = \frac{\sqrt{3}}{3} \)

Correct option: (b) \( \frac{\sqrt{3}}{3} \)

4
\( \sqrt{\frac{5}{10^{-1}}} \) \( = \sqrt{5 \times 10^1} \) (\(10^{-1} = \frac{1}{10}\), so \(\frac{1}{10^{-1}} = 10\)) \( = \sqrt{50} \) \( = \sqrt{25 \times 2} \) \( = 5\sqrt{2} \)

Correct option: (a) \( 5\sqrt{2} \)

5
Area of square \( = a^4 \text{ cm}^2 \) Side length \( = \sqrt{a^4} = a^2 \text{ cm} \) Perimeter \( = 4 \times \text{side length} \) \( = 4 \times a^2 \) \( = 4a^2 \text{ cm} \)

Correct option: (d) \( 4a^2 \text{ cm} \)

6
\( 4^2 + 4^2 + 4^2 + 4^2 \) \( = 4 \times 4^2 \) \( = 4^1 \times 4^2 \) \( = 4^{1+2} \) \( = 4^3 \)

Correct option: (b) \( 4^3 \)

7
If \( 2^{x-1} = 1 \) Since \( 2^0 = 1 \), we have \( 2^{x-1} = 2^0 \) Therefore, \( x-1 = 0 \) \( x = 1 \)

Correct option: (b) \( 1 \)

8
If \( (\sqrt{6})^x \times \sqrt{6}^x = 1 \) \( (\sqrt{6})^{x+x} = 1 \) \( (\sqrt{6})^{2x} = 1 \) Since \( (\sqrt{6})^0 = 1 \), we have \( (\sqrt{6})^{2x} = (\sqrt{6})^0 \) Therefore, \( 2x = 0 \) \( x = 0 \)

Correct option: (a) \( 0 \)

9
What is \( \frac{1}{5} \) of \( (\sqrt{5})^6 \)? \( = \frac{1}{5} \times (\sqrt{5})^6 \) \( = 5^{-1} \times (5^{1/2})^6 \) \( = 5^{-1} \times 5^{6/2} \) \( = 5^{-1} \times 5^3 \) \( = 5^{-1+3} \) \( = 5^2 \) \( = 25 \)

Correct option: (d) \( 25 \)

10
If \( 2^x = 3 \), then what is the value of \( 2^{x+1} \)? \( = 2^x \times 2^1 \) \( = 3 \times 2 \) (Substitute \(2^x=3\)) \( = 6 \)

Correct option: (c) \( 6 \)

Explore More Math Lessons

You're doing great! Keep learning by exploring these other lessons.

Home Worksheet Related Youtube Video Extra Exercises