Lesson: Laws of Square and Cube Roots

A complete guide for Prep 2 students by Mr. Ayman Hassan

Math Egypt Logo by Mr. Ayman Hassan

📚 Learn: Multiplication and Division of Roots

Square Roots

If \(a, b\) are two non-negative real numbers, then:

\(\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}\)

Example: \(\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4\)

\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\), where \(b \neq 0\)

Example: \(\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}\)

Cube Roots

If \(a, b\) are two real numbers, then:

\(\sqrt[3]{a} \times \sqrt[3]{b} = \sqrt[3]{a \times b}\)

Example: \(\sqrt[3]{3} \times \sqrt[3]{-4} = \sqrt[3]{-12}\)

\(\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}}\), where \(b \neq 0\)

Example: \(\frac{\sqrt[3]{16}}{\sqrt[3]{2}} = \sqrt[3]{\frac{16}{2}} = \sqrt[3]{8} = 2\)

🔢 Example 1

Put each of the following numbers in the simplest form:

1 \( \sqrt{32} \)
2 \( \sqrt[3]{24} \)
3 \( 2\sqrt{\frac{5}{2}} \)
4 \( 3\sqrt[3]{\frac{-2}{3}} \)

Solution

1

Analyze the number 32 into two factors, one of which is the largest perfect square (16 × 2).

\(\sqrt{32} = \sqrt{16 \times 2}\)

\(= \sqrt{16} \times \sqrt{2} = 4\sqrt{2}\)

2

Analyze the number 24 into two factors, one of which is the largest perfect cube (8 × 3).

\(\sqrt[3]{24} = \sqrt[3]{8 \times 3}\)

\(= \sqrt[3]{8} \times \sqrt[3]{3} = 2\sqrt[3]{3}\)

3

\(2\sqrt{\frac{5}{2}} = 2 \times \frac{\sqrt{5}}{\sqrt{2}}\)

\(= 2 \times \frac{\sqrt{5}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\)

\(= 2 \times \frac{\sqrt{10}}{2} = \sqrt{10}\)

4

\(3\sqrt[3]{\frac{-2}{3}} = 3 \times \frac{\sqrt[3]{-2}}{\sqrt[3]{3}}\)

\(= 3 \times \frac{\sqrt[3]{-2}}{\sqrt[3]{3}} \times \frac{\sqrt[3]{3^2}}{\sqrt[3]{3^2}}\)

\(= 3 \times \frac{\sqrt[3]{-2 \times 9}}{\sqrt[3]{27}} = 3 \times \frac{\sqrt[3]{-18}}{3} = \sqrt[3]{-18}\)

📌 Remember that!

To make the denominator of the irrational number \(\frac{\sqrt[3]{a}}{\sqrt[3]{b}}\) an integer, multiply both its numerator and denominator by \(\sqrt[3]{b^2}\) as follows:

\(\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}} \times \frac{\sqrt[3]{b^2}}{\sqrt[3]{b^2}} = \frac{\sqrt[3]{ab^2}}{b}\)

To make the denominator of the irrational number \(\frac{\sqrt[3]{a}}{\sqrt[3]{b}}\) an integer, multiply both its numerator and denominator by \(\sqrt[3]{b^2}\) as follows:

\(\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}} \times \frac{\sqrt[3]{b^2}}{\sqrt[3]{b^2}} = \frac{\sqrt[3]{ab^2}}{b}\)

🔢 Example 2

Simplify each of the following to the simplest form:

1 \( 2\sqrt{3} + 5\sqrt{27} - \sqrt{48} \)
2 \( \frac{\sqrt[3]{40} - 2\sqrt[3]{135}}{\sqrt[3]{5}} \)

Solution

1

\( 2\sqrt{3} + 5\sqrt{27} - \sqrt{48} \)

\( = 2\sqrt{3} + 5\sqrt{9 \times 3} - \sqrt{16 \times 3} \)

\( = 2\sqrt{3} + 5 \times 3\sqrt{3} - 4\sqrt{3} \)

\( = 2\sqrt{3} + 15\sqrt{3} - 4\sqrt{3} = 13\sqrt{3} \)

2

\( \frac{\sqrt[3]{40} - 2\sqrt[3]{135}}{\sqrt[3]{5}} \)

\( = \frac{\sqrt[3]{8 \times 5} - 2\sqrt[3]{27 \times 5}}{\sqrt[3]{5}} \)

\( = \frac{\sqrt[3]{8}\sqrt[3]{5} - 2\sqrt[3]{27}\sqrt[3]{5}}{\sqrt[3]{5}} \)

\( = \frac{2\sqrt[3]{5} - 2 \times 3\sqrt[3]{5}}{\sqrt[3]{5}} \)

\( = \frac{2\sqrt[3]{5} - 6\sqrt[3]{5}}{\sqrt[3]{5}} \)

\( = \frac{-4\sqrt[3]{5}}{\sqrt[3]{5}} = -4 \)

Note:

When adding and subtracting unlike radical terms, simplify each term separately. If you get like radical terms, you can add or subtract them.

🔢 Example 3

Geometry: ABC is a triangle whose perimeter is \(\sqrt{1440}\) cm. If \(AB = \sqrt{250}\) cm and \(AC = \sqrt{160}\) cm, find the length of \(\overline{BC}\).

A right-angled triangle ABC with angle C being 90 degrees. The length of side AC is the square root of 160 cm, and the length of the hypotenuse AB is the square root of 250 cm.

Solution

\( \because \text{Perimeter of the triangle} = \text{Sum of its side lengths} \)

\( \therefore \sqrt{250} + \sqrt{160} + \overline{BC} = \sqrt{1440} \)

\( \therefore \sqrt{25 \times 10} + \sqrt{16 \times 10} + \overline{BC} \)

\( = \sqrt{144 \times 10} \)

\( \therefore 5\sqrt{10} + 4\sqrt{10} + \overline{BC} = 12\sqrt{10} \)

\( \therefore 9\sqrt{10} + \overline{BC} = 12\sqrt{10} \)

\( \therefore \overline{BC} = 12\sqrt{10} - 9\sqrt{10} = 3\sqrt{10} \)

\( \text{i.e., the length of } \overline{BC} \text{ is } 3\sqrt{10} \text{ cm.} \)

🔢 Example 4

If \(x = \sqrt{5} + \sqrt{2}\) and \(y = \frac{3}{x}\), find in the simplest form:

1 \( x - y \)
2 \( \frac{y}{x} \)

Solution

\( y = \frac{3}{x} = \frac{3}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} \)

\( = \frac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2} = \frac{3(\sqrt{5} - \sqrt{2})}{5 - 2} \)

\( = \sqrt{5} - \sqrt{2} \)

1

\( x - y = (\sqrt{5} + \sqrt{2}) - (\sqrt{5} - \sqrt{2}) \)

\( = \sqrt{5} + \sqrt{2} - \sqrt{5} + \sqrt{2} = 2\sqrt{2} \)

2

\( \frac{y}{x} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} \)

\( = \frac{(\sqrt{5} - \sqrt{2})^2}{5 - 2} = \frac{5 - 2\sqrt{10} + 2}{3} \)

\( = \frac{7 - 2\sqrt{10}}{3} = \frac{7}{3} - \frac{2}{3}\sqrt{10} \)

🤔 Critical Thinking

  • If a, b are two non-negative real numbers:

    Is \(\sqrt{a} + \sqrt{b} = \sqrt{a+b}\)?

    Let \(a=9, b=16\)

    L.H.S \( = \sqrt{9} + \sqrt{16} = 3 + 4 = 7 \)

    R.H.S \( = \sqrt{9+16} = \sqrt{25} = 5 \)

    \( \because \) L.H.S \( \neq \) R.H.S, the statement is false.

    Is \(\sqrt{a} - \sqrt{b} = \sqrt{a-b}\)?

    Let \(a=25, b=9\)

    L.H.S \( = \sqrt{25} - \sqrt{9} = 5 - 3 = 2 \)

    R.H.S \( = \sqrt{25-9} = \sqrt{16} = 4 \)

    \( \because \) L.H.S \( \neq \) R.H.S, the statement is false.

  • If a, b are two real numbers:

    Is \(\sqrt[3]{a} + \sqrt[3]{b} = \sqrt[3]{a+b}\)?

    Let \(a=8, b=27\)

    L.H.S \( = \sqrt[3]{8} + \sqrt[3]{27} = 2 + 3 = 5 \)

    R.H.S \( = \sqrt[3]{8+27} = \sqrt[3]{35} \)

    \( \because \) L.H.S \( \neq \) R.H.S, the statement is false.

    Is \(\sqrt[3]{a} - \sqrt[3]{b} = \sqrt[3]{a-b}\)?

    Let \(a=64, b=27\)

    L.H.S \( = \sqrt[3]{64} - \sqrt[3]{27} = 4 - 3 = 1 \)

    R.H.S \( = \sqrt[3]{64-27} = \sqrt[3]{37} \)

    \( \because \) L.H.S \( \neq \) R.H.S, the statement is false.

🔢 Example 5

Simplify each of the following to the simplest form:

1 \( 2\sqrt{32} - \sqrt{18} + \sqrt{50} \)
2 \( 2\sqrt[3]{16} + \sqrt[3]{54} - \sqrt[3]{128} \)

Solution

1

\( 2\sqrt{32} - \sqrt{18} + \sqrt{50} \)

\( = 2\sqrt{16 \times 2} - \sqrt{9 \times 2} + \sqrt{25 \times 2} \)

\( = 2 \times 4\sqrt{2} - 3\sqrt{2} + 5\sqrt{2} \)

\( = 8\sqrt{2} - 3\sqrt{2} + 5\sqrt{2} \)

\( = 10\sqrt{2} \)

2

\( 2\sqrt[3]{16} + \sqrt[3]{54} - \sqrt[3]{128} \)

\( = 2\sqrt[3]{8 \times 2} + \sqrt[3]{27 \times 2} - \sqrt[3]{64 \times 2} \)

\( = 2 \times 2\sqrt[3]{2} + 3\sqrt[3]{2} - 4\sqrt[3]{2} \)

\( = 4\sqrt[3]{2} + 3\sqrt[3]{2} - 4\sqrt[3]{2} \)

\( = 3\sqrt[3]{2} \)

Explore More Math Lessons

You're doing great! Keep learning by exploring these other lessons.

Home Worksheet Related Youtube Video Extra Exercises